

Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche

Lipidi e Micelle

- Generalità
- Classificazione dei lipidi
- Doppi strati lipidici

Francesca Anna Scaramuzzo, PhD

Dipartimento di Scienze di Base e Applicate per l'Ingegneria - Centro di Nanotecnologie Applicate all'Ingegneria francesca.scaramuzzo@uniroma1.it

Dipartimento di

SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Generalità

Lipidi: dal greco lípos, grasso

- Non sono polimeri
- Tendono ad aggregarsi
- Hanno grande varietà strutturale
- Sono idrofobici e quindi scarsamente solubili in acqua

DOMANDA: Come si possono separare i lipidi dagli altri materiali biologici in laboratorio?

Funzioni dei Lipidi:

- Matrice strutturale delle membrane biologiche
- Riserva di energia
- Trasmissione messaggi intra ed extra cellulari

I lipidi come riserva di energia:

- Meno ossidati di carboidrati e proteine
- Conservati in forma anidra
- Forniscono sei volte più energia metabolica di un ugual peso di glicogeno idratato

Classificazione dei lipidi:

- Acidi grassi
- Trigliceridi (triaciligliceroli)
- Glicerofosfolipidi (fosfogliceridi)
- Sfingolipidi
- Steroidi
- Eicosanoidi

Acidi Grassi

- Acidi carbossilici a catena lunga, spesso in forma esterificata
- In animali e piante superiori 16 < C < 18, spesso insaturi o poliinsaturi
- Sintetizzati da unità bicarboniose C2
- Nei batteri sono ramificati, idrossilati, contengono ciclopropano
- I saturi sono molto flessibili
- Gli insaturi hanno spesso doppi legami con configurazione *cis* (angolo rigido di 30°) e si impacchettano meno efficacemente dei saturi

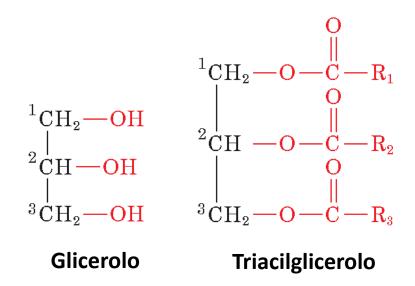
DOMANDA: Come variano i punti di fusione degli acidi grassi <u>saturi</u> in funzione della lunghezza della catena?

DOMANDA: Come variano i punti di fusione degli acidi grassi <u>insaturi</u> in funzione del grado di insaturazione e perché?

Stearic acid Oleic acid Linoleic acid

Acidi Grassi

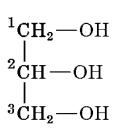
Symbol ^a	Common Name	Systematic Name	Structure	mp (°C)
Saturated fa	ntty acids			
12:0	Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH	44.2
14:0	Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	53.9
16:0	Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	63.1
18:0	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH	69.6
20:0	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH	77
22:0	Behenic acid	Docosanoic acid	CH ₃ (CH ₂) ₂₀ COOH	81.5
24:0	Lignoceric acid	Tetracosanoic acid	CH ₃ (CH ₂) ₂₂ COOH	88
Unsaturated	l fatty acids (all double	e bonds are cis)		
16:1 <i>n</i> –7	Palmitoleic acid	9-Hexadecanoic acid	$CH_3(CH_2)_5CH = CH(CH_2)_7COOH$	-0.5
18:1 <i>n</i> –9	Oleic acid	9-Octadecanoic acid	$CH_3(CH_2)_7CH = CH(CH_2)_7COOH$	12
18:2 <i>n</i> –6	Linoleic acid	9,12-Octadecadienoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_2(CH_2)_6COOH$	-5
18:3 <i>n</i> –3	α-Linolenic acid	9,12,15-Octadecatrienoic acid	$CH_3CH_2(CH=CHCH_2)_3(CH_2)_6COOH$	-11
18:3 <i>n</i> –6	γ-Linolenic acid	6,9,12-Octadecatrienoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_3(CH_2)_3COOH$	-11
20:4 <i>n</i> –6	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_4(CH_2)_2COOH$	-49.5
20:5 <i>n</i> –3	EPA	5,8,11,14,17-Eicosapentaenoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₅ (CH ₂) ₂ COOH	-54
22:6 <i>n</i> –3	DHA	4,7,10,13,16,19-Docosohexenoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₆ CH ₂ COOH	-44
24:1 <i>n</i> –9	Nervonic acid	15-Tetracosenoic acid	$CH_3(CH_2)_7CH = CH(CH_2)_{13}COOH$	39

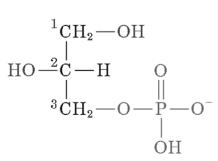

[&]quot;Number of carbon atoms: Number of double bonds. For unsaturated fatty acids, the quantity "n–x" indicates the position of the last double bond in the fatty acid, where n is its number of C atoms, and x is the position of the last double-bonded C atom counting from the methyl-terminal (ω) end.

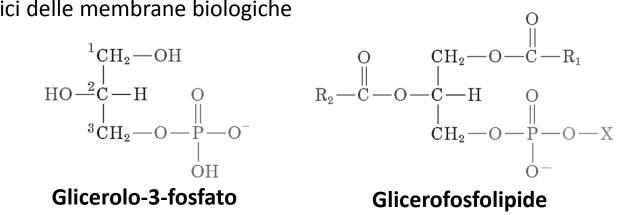
Source: LipidBank (http://www.lipidbank.jp).

Voet, Voet, Pratt, Fundamentals of Biochemistry, IV Edition, 2013

Trigliceridi (Triacilgliceroli)

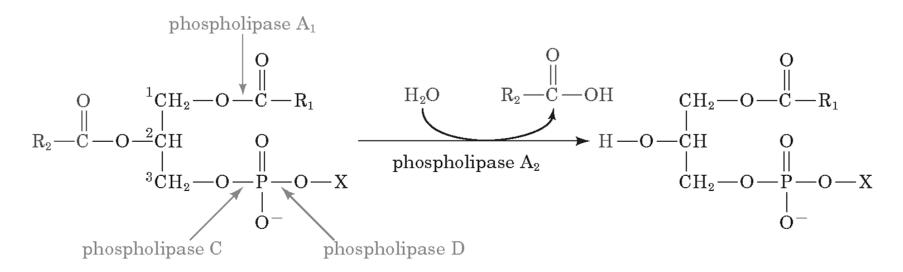

- Grassi e oli di piante e animali
- Glicerolo esterificato con tre molecole di acidi grassi
- Spesso costituiti da 3 molecole di acidi grassi di tipo diverso




- Sintetizzati e conservati negli adipociti (cellule del tessuto grasso)
- Il tessuto adiposo è abbondante in strati sottocutanei e cavità addominale
- Il grasso è riserva di energia a lungo termine e fornisce isolamento termico

Glicerofosfolipidi (Fosfogliceridi)

- Glicerolo-3-fosfato in cui C1 e C2 sono esterificati con acidi grassi e il fosfato è legato ad un altro gruppo X polare
- Molecole anfifiliche con coda alifatica e testa polare
- Principali componenti lipidici delle membrane biologiche

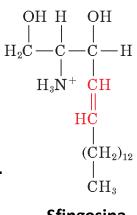

Glicerolo

Glicerofosfolipide

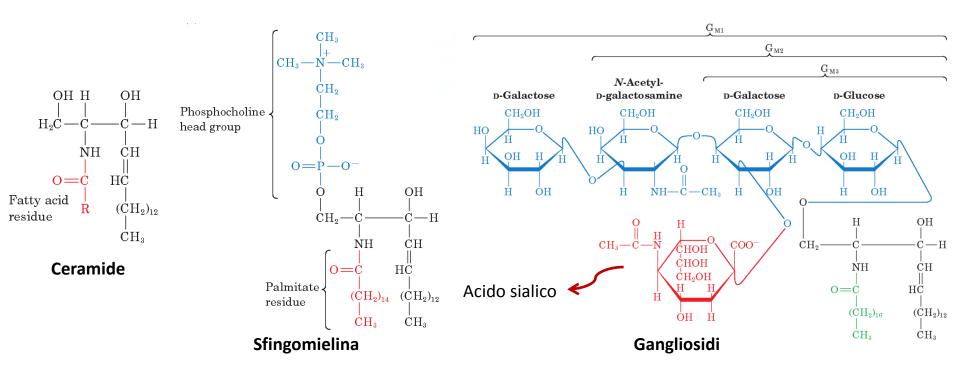
Name of X—OH	Formula of —X	Name of Phospholipid
Water	—н	Phosphatidic acid
Ethanolamine	$-CH_2CH_2NH_3^+$	Phosphatidylethanolamine
Choline	$-CH_2CH_2N(CH_3)_3^+$	Phosphatidylcholine (lecithin)
Serine	$-CH_2CH(NH_3^+)COO^-$	Phosphatidylserine
<i>myo</i> -Inositol	HO H HO OH H H OH	Phosphatidylinositol
Glycerol	—CH₂CH(OH)CH₂OH	Phosphatidylglycerol
Phosphatidylglycerol	$-CH_{2}CH(OH)CH_{2}OH$ $-CH_{2}CH(OH)CH_{2}-O-P-O-CH_{2}$ $O-CH-O-C-R_{4}$ $R_{3}-C-O-CH_{2}$	Diphosphatidylglycerol (cardiolipin)

Glicerofosfolipidi (Fosfogliceridi)

Le fosfolipasi catalizzano l'idrolisi dei glicerofosfolipidi

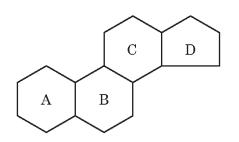

Fosfolipide

Lisofosfolipide

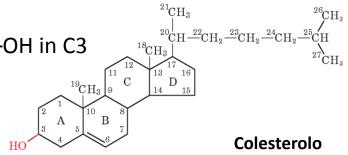

- Le fosfolipasi sono presenti nei veleni di insetti e serpenti
- Alcuni prodotti di idrolisi sono molecole di segnale intra- ed extra- cellulare (es. 1acilglicerolo-3-fosfato nel meccanismo di riparazione delle ferite e 1,2-diacilglicerolo attivatore delle proteine chinasi)

Sfingolipidi

- Lipidi di membrana
- Derivati della *sfingosina* (amminoalcol, C18, doppio legame *trans*)
- Ceramidi: sfingosina contenente un acido grasso legato a gruppo amminico
- Sfingofosfolipidi: testa polare con fosfocolina o fosfoetanolammina (es. sfingomielina negli assoni)
- <u>Cerebrosidi</u>: testa polare con zucchero (glicosfingolipidi)
- Gangliosidi: glicosfingolipidi complessi (es. lipidi del cervello)



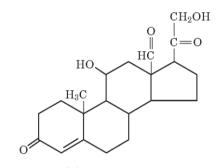
Sfingosina



Steroidi

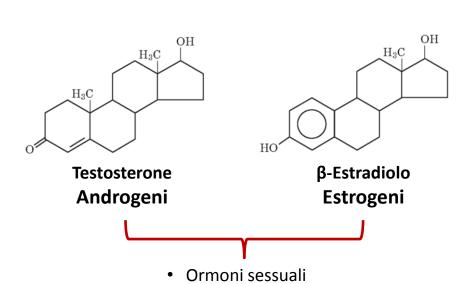
- Derivati del ciclopentanoperidrofenantrene
- Presenti solo negli eucarioti
- Per essere trasportati nel sangue devono essere legati a proteine

Colesterolo: steroide più abbondante negli animali, con –OH in C3



Nei mammiferi, il colesterolo è precursore degli <u>ormoni steroidei</u>

$$\begin{array}{c} & \overset{21}{\text{CH}_2\text{OH}} \\ & \overset{20}{\text{C}} = \text{O} \\ & \overset{18}{\text{CH}_3} & \overset{-\text{OH}}{} \\ & \overset{19}{\text{CH}_3} & \overset{1}{\underset{14}{1}} & \overset{16}{\underset{15}{15}} \\ & \overset{1}{\underset{10}{10}} & \overset{1}{\underset{9}{\text{8}}} & \overset{1}{\underset{14}{\text{6}}} \\ & \overset{1}{\underset{15}{\text{5}}} & \overset{1}{\underset{6}{\text{7}}} & \overset{1}{\underset{15}{\text{6}}} \end{array}$$


Cortisolo Glucocorticoidi

- Metabolismo carboidrati, proteine e lipidi
- Reazioni infiammatorie
- Stress

Aldosterone Mineralcorticoidi

Escrezioni sali e acqua dai reni

La vitamina D

- Deriva dalla rottura del legame C9-C10 dell'anello B
- Promuove l'assorbimento di Ca²⁺ nell'intestino e il suo rilascio dall'osso

 H_3C

 $\mathbf{R} = \mathbf{X}$ 7-Dehydrocholesterol

 $\mathbf{R} = \mathbf{Y}$ Ergosterol

$$X = \begin{matrix} H_3C \\ CH_3 \end{matrix} \qquad Y = \begin{matrix} CH_3 \\ CH_3 \end{matrix}$$

i. UV

ii. Spontanea

iii. Idrossilazione enzimatica in fegato e rene

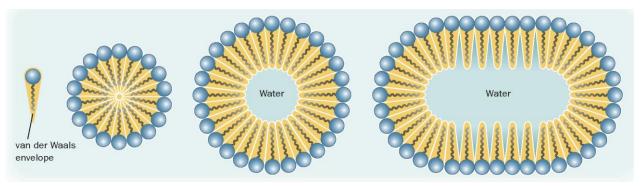
R = X Vitamin D_3 (cholecalciferol) R = Y Vitamin D_2 (ergocalciferol)

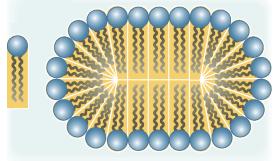
$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Eicosanoidi

Derivati dell'acido arachidonico (20 atomi di C)

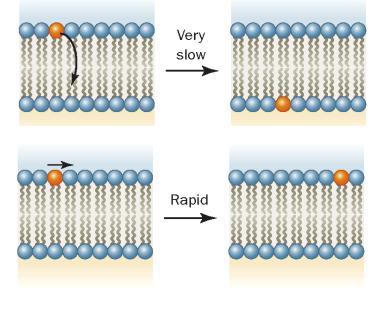
Unsaturated fatty acids (all double bonds are cis)

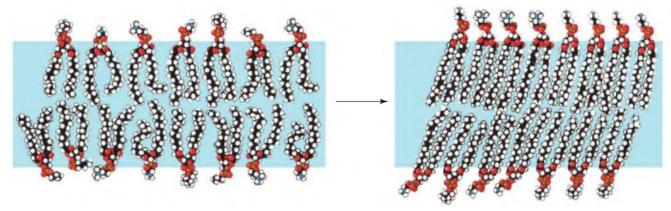

Symbol ^a	Common Name	Systematic Name	Structure	mp (°C)
20:4 <i>n</i> –6	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	$CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COOH$	-49.5


"Number of carbon atoms: Number of double bonds. For unsaturated fatty acids, the quantity "n–x" indicates the position of the last double bond in the fatty acid, where n is its number of C atoms, and x is the position of the last double-bonded C atom counting from the methyl-terminal (ω) end. Source: LipidBank (http://www.lipidbank.jp).

- Agiscono localmente e a concentrazioni basse
- Dolore/febbre, pressione sanguigna, coagulazione sangue, riproduzione
- L'aspirina e gli antiinfiammatori non steroidei inibiscono PGH₂ sintasi

Doppi strati lipidici


- I lipidi nei sistemi viventi si trovano come aggregati
- <u>Effetto idrofobico</u>: tendenza dell'acqua a minimizzare i suoi contatti con le molecole idrofobiche
- L'acqua tende a solvatare le molecole idrofiliche e ad estrudere le molecole idrofobiche
- Le molecole anfifiliche devono formare aggregati strutturalmente ordinati
- <u>Micelle</u>: aggregati globulari in cui le catene idrocarburiche non sono a contatto con l'acqua
- Forma e dimensioni delle micelle dipendono dalla natura dei lipidi
- <u>Liposomi</u>: vescicole la cui parete è formata da un unico doppio strato lipidico
- Liposomi usati come modello di membrane biologiche e veicoli per il trasporto di farmaci



Doppi strati lipidici: Caratteristiche

- <u>Diffusione trasversale (flip-flop)</u>: trasferimento di una molecola lipidica attraverso un doppio strato
- <u>Diffusione laterale</u>: mobilità di una molecola lipidica lungo il piano del doppio strato
- Doppio strato è fluido bidimensionale
- Le code idrocarburiche hanno legami C-C liberi di ruotare
- La rotazione delle teste polari è limitata dalle interazioni elettrostatiche
- <u>Cristallo liquido</u>: stato assunto dai doppi strati lipidici al di sotto di una certa temperatura di transizione
- Allo stato di cristallo liquido, i doppi strati hanno consistenza di gel
- Il colesterolo modula la fluidità dei doppi strati

